How to use DYNA, a matricial formalism to analyze x-ray magnetic reflectivity curves

LC: Emmanuelle JAL, LCPMR, Sorbonne Université, Paris
SUELELL Nicolas Jaouen, Synchrotron SoLEIL, Saclay

NEEEL Stéphane Grenier, Jean-Marc Tonnerre, Institut Néel, Grenoble
M. Elzo et al. JMMM 324, 105-112 (2012), http://neel.cnrs.fr/spip.php?article2575
20-09-2018

Outline

I. Principle of XRMR

II. Formalism

1. Generality
2. Kinematic
3. Dynamic, what is Dyna doing
III. How to use DYNA a matricial dynamic formalism
4. Entry: Optical constant / Parameter
5. Starting: Build a layer / Set the configuration
6. Fitting: Add experimental data / play with the parameter
IV. Conclusions and Outlook

I. Principle of XRMR (1/3)

When use X-ray:
$>$ Magnetic sensitivity
$>$ Spatial resolution
$>$ Element selectivity

Absorption spectroscopy

Scattering

Resonant Scattering

>Interaction x-ray - Matter:

- Specular Reflectivity
- Spectroscopy : XMCD*

[^0]
I. Principle of XRMR (2/3)

> Interaction x-ray - Matter:

- Specular Reflectivity

X-ray Resonant Magnetic

- Spectroscopy : XMCD* Reflectivity (XRMR)

Incident beam

[^1]
I. Principle of XRMR (3/3)

- 2 ways to obtain I^{+}and I^{-}:
- By reversing the polarization
- Cpm configuration
- By reversing the applied field.
- Hpm configuration and Π configuration

- The field can be:

- In the 3 directions : longitudinal, transverse and polar
- At saturation or at remanence

Outline

I. Principle of XRMR

II. Formalism

1. Generality
2. Kinematic
3. Dynamic, what is Dyna doing
III. How to use DYNA a matricial dynamic formalism
4. Entry: Optical constant / Parameter
5. Starting: Build a layer / Set the configuration
6. Fitting: Add experimental data / play with the parameter

IV. Conclusions and Outlook

II. Formalism: Generality

Diffracted intensity and Resonant atomic scattering factor, f: Hannon etal. PRL61, 1245 (1989)

$$
\begin{gathered}
I \propto\left|\sum_{j} f_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}\right|^{2} f(E)=\left(\mathbf{e}_{r}^{*} \cdot \mathbf{e}_{i}\right) \underbrace{f_{0}+F^{\prime}(E)+i F^{\prime \prime}(E)}_{\text {Charge scattering }})-i\left(\mathbf{e}_{r}^{*} \times \mathbf{e}_{i}\right) \cdot \mathbf{m} \underbrace{\left(M^{\prime}(E)+i M^{\prime \prime}(E)\right.}_{\text {1st order magnetic scattering }}) \\
I \pm \propto C^{2} \pm 2 M C
\end{gathered}
$$

II. Formalism: kinematic (1/2)

$I \propto\left\|\sum_{j} f_{j} e^{i \overrightarrow{\mathrm{Q}} \cdot \vec{r}_{j}}\right\|^{2}$				
$I \pm \propto C^{2} \pm 2 M C$ $I^{+}-I^{-}$		0	$\frac{m_{\text {tran }} \sin (4 \theta) F M_{1}}{\cos (2 \theta)^{2}\left\|F_{c}\right\|^{2}}$	0
$\begin{gathered} I^{+}+I^{-} \\ A \propto \frac{M}{C} \end{gathered}$		$\frac{-4 m_{\text {lon }} \cos \theta^{3} F M_{2}}{\left[1+\cos (2 \theta)^{2}\right] \mid F_{c^{2}}{ }^{2}}$	$\frac{m_{\text {tran }} \sin (4 \theta) F M_{1}}{\left[1+\cos (2 \theta)^{2}\right]\left\|F_{c}\right\|^{2}}$	$\frac{4 m_{O . P} \sin \theta^{3} F M_{2}}{\left[1+\cos (2 \theta)^{2}\right]\left\|F_{c}\right\|^{2}}$
$\begin{aligned} & F M_{1}=F^{\prime \prime} M^{\prime}-F^{\prime} M^{\prime \prime} \\ & F M_{2}=F^{\prime} M^{\prime}+F^{\prime \prime} M^{\prime \prime} \end{aligned}$			0	See Annex for

II. Formalism: kinematic (2/2)

$I \propto\left|\sum_{j} f_{j} e^{i \overrightarrow{\mathrm{Q}} \cdot \vec{r}_{j}}\right|^{2}$
$I \pm \propto C^{2} \pm 2 M C$
$A=\frac{I^{+}-I^{-}}{I^{+}+I^{-}}$
$A \propto \frac{M}{C}$

$$
F M_{1}=F^{\prime \prime} M^{\prime}-F^{\prime} M^{\prime \prime}
$$

$$
F M_{2}=F^{\prime} M^{\prime}+F^{\prime \prime} M^{\prime \prime}
$$

II. Formalism: dynamic = matrix formalism (1/3)

For this formalism, take the optics point of view
$>$ The propagation of electro-magnetic waves in a medium is described by Maxwell equations

- The electric displacement \mathbf{D} is related to the electric field \mathbf{E} thanks to the tensorial dielectric permittivity $\hat{\varepsilon}: \mathbf{D}=\hat{\varepsilon} . \mathbf{E}$
- The magnetic field \mathbf{B} is related to the magnetizing field \mathbf{H} thanks to scalar magnetic permability μ
$>$ Link between the permittivity, and the scattering factors
- $\hat{\varepsilon}=1+\frac{r_{0} \lambda^{2}}{\pi} \sum_{i} \rho_{i} \hat{f}_{i}$ where r_{0} est electron radius and ρ_{i} is the density of the $\mathrm{i}^{\text {th }}$ element.
$>$ Solve Maxwell equation
- The eigenwaves propagating in a magnetic medium are circularly polarized waves (in the incident wave basis)
- Refractive index linked with optical factor F_{c} and F_{m} :

$$
n^{ \pm} \approx 1+\frac{r_{0} \lambda^{2} \rho}{2 \pi}\left(F_{c} \mp\left(\cos \theta m_{l o n}+\sin \theta m_{O . P}\right) F_{m}\right)
$$

II. Formalism: dynamic = matrix formalism (2/3)

The propagation of electro-magnetic waves in a medium is described by Maxwell equations : Circular basis.

The wave is therefore described in the circular basis and for each medium there is 2 waves represented by the electric displacement \mathbf{D}, one incident (transmitted) and one reflected. So the electric displacement can be written:

$$
\partial_{0}=\left(\begin{array}{l}
i^{+} \\
i^{-} \\
r^{+} \\
r^{-}
\end{array}\right)
$$

At each interface, the boundary condition are taken into account thanks to the boundary matrix \hat{A}_{i}.

$$
\hat{A}_{0} D_{0}=\hat{A}_{1} D_{1} \text { so } \hat{A}_{1}^{-1} \hat{A}_{0} D_{0}=D_{1}
$$

The roughness is treated by multiplying the matrix element $\hat{A}_{1}^{-1} \hat{A}_{0}$ by an exponential simulating the roughness as a Gaussian with a certain width σ. The magnetic roughness is not taken into account

II. Formalism: dynamic = matrix formalism (3/3)

The propagation of electro-magnetic waves in a medium is described by Maxwell equations : Circular basis.

Then the wave is propagating through the medium which is modeled by a the matrix \hat{P}_{i}. At the end of the first medium $D_{1}^{\prime}=\hat{P}_{1} D_{1}=\hat{P}_{1} \hat{A}_{1}^{-1} \hat{A}_{0} D_{0}$ and at the start of the new medium $D_{2}=\hat{A}_{2}^{-1} \hat{A}_{1} \hat{P}_{1} \hat{A}_{1}^{-1} \hat{A}_{0} D_{0}$. So at the end

$$
\begin{gathered}
D_{f}=\hat{A}_{f}^{-1}\left(\prod_{m} \hat{A}_{m} \hat{P}_{m} \hat{A}_{m}^{-1}\right) \hat{A}_{0} D=\widehat{M} D_{0} \\
\text { Where } D_{0}=\left(\begin{array}{l}
i^{+} \\
i^{-} \\
r^{+} \\
r^{-}
\end{array}\right) \text {and } D_{f}=\left(\begin{array}{c}
t^{+} \\
t^{-} \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

By solving this system we obtain the reflectivity in function of the incident wave. Since \hat{P}_{i} and \hat{A}_{i} depend on the angle θ, the wavelength λ, the refractive index n and the permittivity $\hat{\varepsilon}$, those last 2 depending on magnetization, one can derive the magnetization, thickness and roughness of each layer.

II. Formalism: Summary

Magnetic dichroïsm + Reflectivity = depth magnetic sensibility

Outline

I. Principle of XRMR

II. Formalism

1. Generality
2. Kinematic
3. Dynamic, what is Dyna doing

IIII. How to use DYNA a matricial dynamic formalism

1. Entry: Optical constant / Parameter
2. Starting: Build a layer / Set the configuration
3. Fitting: Add experimental data / play with the parameter

IV. Conclusions and Outlook

III. How to use DYNA

In a folder download the "sources" and "datas" folder, from here http://neel.cnrs.fr/spip.php?article2575 and create a "projects" folder
4. MATLAB R2013a

Open Matlab

$>$ go to the path of you main folder/sources (e.g. Dyna-v3_16/Src)
$>$ type dyna and press enter
> This window open

III. How to use DYNA

III. How to use DYNA: Optical constant (1/3)

Need to know the absorption, and XMCD to determine
$>$ The absorption and dispersive factor, F' and F'
> The XMCD/2 and magnetic dispersive factor, M' and M"
Check that they exist in the table (select energy range)

III. How to use DYNA: Optical constant (2)

If the complete resonant optical constant doesn't exist
$>$ From an article or measurement extract XAS (F") for both polarization
$>$ Be careful we need $\mathrm{F}^{\prime \prime}$ and not β ($\beta=$ cste. $\lambda^{2} . F^{\prime \prime}$)
$>$ Scale it far from the edge to Chantler table and Derive the scaled XMCD/2 (https://physics.nist.gov/PhysRefData/FFast/html/ form.html)
>You have the resonant part of F" and M", the imaginary part
$>$ Add this resonant part to the non-resonant file in order to use Kramers Kronig relation to derive the real part F' and M'

III. How to use DYNA: Optical constant (3/3)

If the complete resonant optical constant doesn't exist
$>$ Export Energy (eV), $\mathrm{F}^{\prime}, \mathrm{F}^{\prime \prime}$ in one .cf folder and the same for the magnetic part ($\mathrm{E}\left(\mathrm{eV}\right.$), $\mathrm{M}^{\prime}, \mathrm{M}^{\prime \prime}$) in a .mf folder. Need to create an associate .cf2 file ($=0$) and a note (.txt) file where you can write where does those data come from.
>You can plot them from the program

III. How to use DYNA: Optical constant for alloy (1/2)

If for an alloy you do not have any measured or tabulated optical constant, you can create an artificial alloy from the dyna database panel. To create an alloy $\mathrm{Co}_{70} \mathrm{Gd}_{30}$
$>$ In the database panel, select the energy range (500-1500 eV) and click on the Co element.
> Press insert, it will appears in the new element case
> Select the Gd element and press insert. You have now 2 elements
$>$ Put the alloy coefficient (70-30)

Figure 2: Database Panel and Scattering Factor Maker

III. How to use DYNA: Optical constant for alloy (2/2)

If for an alloy you do not have any measured or tabulated optical constant, you can create an artificial alloy from the dyna database panel. To create an alloy $\mathrm{Co}_{70} \mathrm{Gd}_{30}$
$>$ Press Calcul, it will give you the the optical constant with the stoichiometric coefficient you have entered
$>$ Type a filename (eg: Co70Gd30_c, c for calculated)
>Enter the comment in the comment window
> You can save those data and use the filename for one layer in the main panel

III. How to use DYNA: parameter

Once you have the optical constant for all your chemical component, need to calculate the density in $\mathrm{mol} / \mathrm{cm}^{3}$.
$>$ From a periodic table (https://www.webelements.com/), know the density in $\mathrm{g} / \mathrm{cm}^{3}$ and the atomic mass in $\mathrm{g} / \mathrm{mol}$, and divide them.
$>$ Here the principal element

| | Fe | Ni | Co | Si | Al | Pt | Gd | Tb | Ta | Cu | $\mathrm{Al2O3}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Densite $\mathrm{g} / \mathrm{cm}^{3}$ | 7.874 | 8.908 | 8.9 | 2.33 | 2.7 | 21.09 | 7.901 | 8.219 | 16.650 | 8.920 | 4 |
| Masse atomique $\mathrm{g} / \mathrm{mol}$ | 55.845 | 58.6934 | 58.933 | 28.0855 | 26.98 | 195.084 | 157.23 | 158.925 | 180.95 | 63.546 | 101.961 |
| Densite $\mathrm{mol} / \mathrm{cm}^{3}$ | 0.141 | 0.152 | 0.151 | 0.083 | 0.100 | 0.108 | 0.0502 | 0.0517 | 0.092 | 0.1404 | 0.039 |

III. How to use DYNA: Build a layer/sample (1/2)

To build your sample, in the sample composition panel:

$>$ Select a line

- Enter the name
- m=nb of repetition
 of a multilayer stack
- Density
- Thickness
- Roughness

>Do the same for the other layer of your sample
$>$ Do not forget to adjust the lower and upper limit
>If you want to add a layer or delete one, use the button "insert" and "delete" in the left-bottom corner.

III. How to use DYNA: Build a layer/sample (2/2)

To build your sample, in the sample composition panel:

$>$ Then take care of the magnetic part

- Put 1 for mms, it will give a magnetic moment proportional to the magnetic optical constant.
- Adjust both angles phi and gamma for the direction
- There is 3 registered useful direction
- If you want several mms, you need to divide your magnetic layer but we will do that after the structural fit (slide 44)
$>$ Do not take into account AS => for anisotropic ferrimagnetic

III. How to use DYNA: Set experimental parameter (1/2)

To build your sample, in the sample composition panel:
$>$ You should obtain that

III. How to use DYNA: Set experimental parameter (1/2)

To build your sample, in the sample composition panel:
> You should obtain that

Now you need to adjust the experimental parameter

III. How to use DYNA: Set experimental parameter (2/2)

Adjust the experimental parameter
$>$ Type of Formalism
(top right slide menu)

- Paratt (only structyre)
- Magnetism (structure + magnetism)
- Anisotropy (structure + anisotropy)
- For each, fix energy / fix angle / fix Q
$>$ Energy / Angle
$>$ Polarization (no outgoing analyzer

$>$ All the other variable will be adjusted to mimic the experimental data
$>$ You can add a simulation by going to the Sims menu (at the top). The sample panel will be the same between the different simulation, but all the parameter of the experimental are independent from one simulation to the other.

III. How to use DYNA: Import experimental data

You should get something like that

III. How to use DYNA: Play with experimental parameter (1/3)

You should get something like that

You want to adjust roughly your calculation to the data by playing with the experimental parameter
> Normalization
$>$ Background
$>$ X-shift (not for angle scan)
I usually only play with the calc parameter

III. How to use DYNA: Play with experimental parameter (2/3)

You should get something like that
You want to adjust
roughly your
calculation to the
data by playing
with the
experimental
parameter
> beam thickness
Sample length
$>$ Resolution

Warning, the resolution and the roughness have a similar effect...

III. How to use DYNA: Play with experimental parameter (3/3)

To save your project and export your simulation:
Use the Project menu to save and load your project
Use the export menu to export
 31-Aug-2018 11:50:40: Calculation performed

III. How to use DYNA: Fitting generality / strategy (1/2)

In DYNA you can only fit the sample parameter (and not the experimental one)
Since there is a lot of parameter to play with, you need to be careful. Here are some rules and trick I am following
$>$ Do not fit all the parameters together
$>$ Start by structural parameter and Paratt formalism (Use laverage) far from resonance and then at resonance

- Only thickness

Do not hesitate to re-iterate those steps

- Only roughness
- Both
- Density
$>$ Without changing the structure, fit the magnetic parameter with magnetism formalism (Use Asymetry)
- Only mms, 1 layer
- Depending on the qualitative analysis, fit the angles
- Try to divide the magnetic layer

III. How to use DYNA: Fitting generality / strategy (1/2)

$>$ Use several experiment set up at the same time:

- several energy
- Reflectivity and asymmetry
$>$ Do not forget to adjust the experimental parameter if you do not succeed to fit properly the roughness

Here a summary on how the parameters influence the most the results
$>$ The thickness plays on the oscillation periodicity
$>$ The roughness plays on the amplitude of the oscillation and decreasing shape
$>$ The density plays on the slope, mainly at small angle
$>$ The mms plays only on the amplitude of the asymmetry.
$>$ The angle plays on the shape accordingly to the kinematic formalism
$>$ If do not succeed to fit the asymmetry at large angle but quite good at low angle, try to make interface magnetic layer.

III. How to use DYNA: Fit example Gd 10 nm on W: structure (1/3)

Fit the thickness of Gd
$>$ In the fitting window, select the layer, the parameter, press "add"
> Then "start", when finished, "accept" or "reset all"
$>$ Increase the
"MaxIter" and "MaxFunEvals" if needed

Fit the Roughness
$>$ Delete the fitting parameter thickness
>Add Roughness of Gd_r and W
$>$ Fit

III. How to use DYNA: Fit example Gd 10 nm on W: structure (1/3)

Fit the Roughness
$>$ Delete the fitting parameter thickness
>Add Roughness of Gd_r and W
$>$ Fit, Accept
$>$ Fit both roughness and thickness but looks worst, reset all

Dyna Project Ratio Graph Sims Data Export

III. How to use DYNA: Fit example Gd 10 nm on W: structure (1/3)

Add an energy at resonance
$>$ check the shift in energy!
$>11 \mathrm{eV}$ shift => substarct 11 eV to the experience

III. How to use DYNA: Fit example Gd 10 nm on W: structure ($1 / 3$)

Add an energy at resonance
> check back 1180eV (1169 in DYNA)
$>$ Much better!

III. How to use DYNA: Fit example Gd 10 nm on W: structure ($1 / 3$)

Add an energy at resonance
$>1180 \mathrm{eV}$ (1169 in DYNA)
>Adjust the normalization and redo fit roughness and normalization

III. How to use DYNA: Fit example Gd 10 nm on W: structure $(1 / 3)$

Add an energy at ${ }^{\text {m }}$ resonance
$>1195 \mathrm{eV}$
$(1183 \mathrm{eV}$ Dyna)

31-Aug-2018 14:58:36: Calculation performed
III. How to use DYNA: Fit example Gd 10 nm on W: structure (1/3)
Add an energy at
resonance
$>1195 \mathrm{eV}$
$(1183 \mathrm{eV}$ Dyna)
$>$ Start fit only this
energy (do not
forget to save
the previous
energy!)
$>$ Check 1180 eV
$=>$ not so bad
$>$ Check 1196,8
eV

III. How to use DYNA: Fit example Gd 10 nm on W: structure (1/3)

III. How to use DYNA: Fit example Gd 10 nm on W: Magnetism (1/3)

From the structure
Digure 1: Dyna
Dyna Project Ratio Graph Sims Data Export of 1195 eV look at the magnetism formalism and asymetry >Longitudinal geometry and $\mathrm{mms}=1$ => not good at high angle.

III. How to use DYNA: Fit example Gd 10 nm on W: Magnetism (1/3)

From the structure of 1195 eV look at the magnetism formalism and asymetry $>$ Try to play with OP angle phi to fit large reflected angle => Better! $>$ Need to divide the magnetc layer

III. How to use DYNA: Fit example Gd 10 nm on W: Magnetism (1/3)

From the structure wimm
of 1195 eV look at the magnetism formalism and asymmetry
$>$ Divide the magnetic layer in 2 (thickness total not changed) 95,7/10
$>$ Fit the 2 mms
$>$ To be continued

Outline

I. Principle of XRMR

II. Formalism

1. Generality
2. Kinematic
3. Dynamic, what is Dyna doing

IIII. How to use DYNA a matricial dynamic formalism

1. Entry: Optical constant / Parameter
2. Starting: Build a layer / Set the configuration
3. Fitting: Add experimental data / play with the parameter

IV. Conclusions and Outlook

IV. Conclusion and Outlook

>Normally you have now all the basis to fit.
$>$ It is important to go back and forth between different energy to be sure the model you found is unique and robust.
$>$ The code is still evolving, so check from time to time if there is a new version on the website (http://neel.cnrs.fr/spip.php?article2575). If you have a suggestion, do not hesitate to contact us.
>Please cite this article if you are referring to DYNA in a paper. M. Elzo et al. JMMM 324, 105-112 (2012),

Annex: Formalism: Deriving the equation

Resonant atomic scattering factor, f: Hannon et al. PRL61, 1245 (1989)

$$
f(E)=\left(\mathbf{e}_{r}^{*} \cdot \mathbf{e}_{i}\right)(\underbrace{=\mathrm{F}_{\mathrm{c}}}_{\text {Charge scattering }} \begin{array}{c}
f_{0}+F^{\prime}(E)+i F^{\prime \prime}(E)
\end{array})-i\left(\mathbf{e}_{r}^{*} \times \mathbf{e}_{i}\right) \cdot \mathbf{m}_{\text {1st order }}^{\mathbf{m}^{\text {magnetic scattering }}=\mathrm{F}_{\mathrm{m}}}\left(M^{\prime}(E)+i M^{\prime \prime}(E)\right) ~)
$$

Matrix expression based on the σ, π polarization states:
$>\boldsymbol{e}_{\boldsymbol{i}}=\sigma_{i}$ ou $\boldsymbol{\pi}_{\boldsymbol{i}}$, et $\boldsymbol{e}_{\boldsymbol{r}}=\boldsymbol{\sigma}_{\boldsymbol{r}}$ ou $\boldsymbol{\pi}_{\boldsymbol{r}}$
$>\hat{f}(E)=\left(\begin{array}{ll}f_{\sigma_{i}, \sigma_{r}} & f_{\sigma_{i}, \pi_{r}} \\ f_{\pi_{i}, \sigma_{r}} & f_{\pi_{i}, \pi_{r}}\end{array}\right)$

\Rightarrow Express $\sigma_{\mathrm{i}}, \pi_{\mathrm{i}}, \sigma_{\mathrm{r}}, \pi_{\mathrm{r}}$ and \mathbf{m} in the ($\mathrm{x}, \mathrm{y}, \mathrm{z}$ base)
$>f_{\sigma_{i}, \sigma_{r}}$ is $f(E)$ for $\boldsymbol{e}_{\boldsymbol{r}}=\boldsymbol{\sigma}_{\boldsymbol{r}}$ and $\boldsymbol{e}_{\boldsymbol{i}}=\boldsymbol{\sigma}_{\boldsymbol{i}}$
$>f_{\sigma_{i}, \pi_{r}}$ is $f(E)$ for $\boldsymbol{e}_{\boldsymbol{r}}=\boldsymbol{\pi}_{\boldsymbol{r}}$ and $\boldsymbol{e}_{\boldsymbol{i}}=\boldsymbol{\sigma}_{\boldsymbol{i}}$
$>$ etc. ...

Annex: Formalism: Deriving the equation

If $f_{e_{i} e_{r}}=F_{c}\left(\boldsymbol{e}_{r}^{*} \cdot \boldsymbol{e}_{\boldsymbol{i}}\right)-i F_{m}\left(\boldsymbol{e}_{\boldsymbol{r}}^{*} \times \boldsymbol{e}_{\boldsymbol{i}}\right) \cdot \boldsymbol{m}$ and
$\boldsymbol{\sigma}_{i}=\boldsymbol{\sigma}_{r}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \boldsymbol{\pi}_{i}=\left(\begin{array}{c}0 \\ \sin (\theta) \\ -\sin (\theta)\end{array}\right), \boldsymbol{\pi}_{r}=\left(\begin{array}{c}0 \\ -\sin (\theta) \\ -\sin (\theta)\end{array}\right)$, et $\boldsymbol{m}=\epsilon\left(\begin{array}{c}m_{\text {tran }} \\ m_{\text {lon }} \\ m_{0 . P}\end{array}\right)$ avec $\epsilon= \pm 1$
Then
$>f_{\sigma_{i}, \sigma_{r}}=F_{c}$
$>f_{\sigma_{i}, \pi_{r}}=-i \epsilon F_{m}\left(m_{\text {lon }} \cos (\theta)+m_{0 . P} \sin (\theta)\right)$
$>f_{\pi_{i}, \sigma_{r}}=-i \epsilon F_{m}\left(m_{O . P} \sin (\theta)-m_{\text {lon }} \cos (\theta)\right)$
$>f_{\pi_{i}, \pi_{r}}=F_{c} \cos (2 \theta)+i \epsilon F_{m} m_{\text {tran }} \sin (2 \theta)$

and

$$
f(E)=F_{c}\left(\begin{array}{cc}
1 & 0 \\
0 & \cos (2 \theta)
\end{array}\right)-i F_{m}\left(\begin{array}{cc}
0 & m_{\text {lon }} \cos (\theta)+m_{o . P} \sin (\theta) \\
-m_{\text {lon }} \cos (\theta)+m_{O . P} \sin (\theta) & -m_{\text {tran }} \sin (2 \theta)
\end{array}\right)
$$

Annex: Formalism: Deriving the equation

From this resonant scattering factor, the reflected intensity can be calculated since $I \propto\left|\sum_{j} f_{j} e^{i Q r_{j}}\right|^{2}$. The reflected intensity can be decomposed in the $\sigma_{\mathrm{r}}, \pi_{\mathrm{r}}$ basis and in the approximation that the scattering factor is independent of the atom, one find:

$$
I=I_{\sigma_{r}}+I_{\pi_{r}}=\left|f_{\sigma_{r}}\right|^{2}+\left|f_{\pi_{r}}\right|^{2}
$$

For a general initial polarization, the resonant scattering factor can be written

$$
\hat{f}_{e}=\left(\begin{array}{ll}
f_{\sigma_{i}, \sigma_{r}} & f_{\sigma_{i}, \pi_{r}} \\
f_{\pi_{i}, \sigma_{r}} & f_{\pi_{i}, \pi_{r}}
\end{array}\right) \cdot\binom{\delta e_{\sigma}}{-i e_{\pi}}=\binom{\delta e_{\sigma} f_{\sigma_{i}, \sigma_{r}}-i e_{\pi} f_{\sigma_{i}, \pi_{r}}}{\delta e_{\sigma} f_{\pi_{i}, \sigma_{r}}-i e_{\pi} f_{\pi_{i}, \pi_{r}}}=\binom{f_{\sigma_{r}}}{f_{\pi_{r}}}
$$

Developing the equation and neglecting the magnetic term of order 2 or more one find the general expression of the reflected intensity with δ and $\varepsilon=+/-1$ and e_{σ} and e_{π} $=0$ or 1

$$
I_{\delta}^{\epsilon}=\left[e_{\sigma}^{2}+e_{\pi}^{2} \cos (2 \theta)\right]\left|F_{c}\right|^{2}+\epsilon\left\{e _ { \pi } ^ { 2 } m _ { \text { tran } } \operatorname { s i n } (4 \theta) \left[F^{\prime \prime} M^{\prime}-\right.\right.
$$

[^0]: * X-ray Magnetic Circular Dichroism

[^1]: * X-ray Magnetic Circular Dichroism

